51 research outputs found

    ProBLM Web Server: Protein and Membrane Placement and Orientation Package

    Get PDF
    The 3D structures of membrane proteins are typically determined without the presence of a lipid bilayer. For the purpose of studying the role of membranes on the wild type characteristics of the corresponding protein, determining the position and orientation of transmembrane proteins within a membrane environment is highly desirable. Here we report a geometry-based approach to automatically insert a membrane protein with a known 3D structure into pregenerated lipid bilayer membranes with various dimensions and lipid compositions or into a pseudomembrane. The pseudomembrane is built using the Protein Nano-Object Integrator which generates a parallelepiped of user-specified dimensions made up of pseudoatoms. The pseudomembrane allows for modeling the desolvation effects while avoiding plausible errors associated with wrongly assigned protein-lipid contacts. The method is implemented into a web server, the ProBLM server, which is freely available to the biophysical community. The web server allows the user to upload a protein coordinate file and any missing residues or heavy atoms are regenerated. ProBLM then creates a combined protein-membrane complex from the given membrane protein and bilayer lipid membrane or pseudomembrane. The user is given an option to manually refine the model by manipulating the position and orientation of the protein with respect to the membrane

    Interdimer zipping in the chemoreceptor signaling domain revealed by molecular dynamics simulations

    Get PDF
    Chemoreceptors are principal components of the bacterial sensory system that modulates cellular motility. They detect changes in the environment and transmit information to CheA histidine kinase, which ultimately controls cellular flagellar motors. The prototypical Tsr chemoreceptor in E. coli is a homodimer containing two principal functional modules: (i) a periplasmic ligand-binding domain and (ii) a cytoplasmic signaling domain. Chemoreceptor dimers are arranged into a trimer of dimers at the tip of the signaling domain comprising a minimal physical unit essential for enhancing the CheA activity several hundredfold. Trimers of dimers are arranged into highly ordered hexagon arrays at the cell pole; however, the mechanism underlying the trimer-of-dimer and higher order array formation remains unclear. Furthermore, molecular mechanisms of signal transduction that are likely to involve inter-dimer interactions are not fully understood. Here we apply all-atom, microsecond-time scale molecular dynamics simulations of the Tsr trimer of dimers atomic model in order to obtain further insight into potential interactions within the chemoreceptor signaling unit. We show extensive interactions between homodimers at the hairpin tip of the signaling domain, where strong hydrophobic interactions maintain binding. A subsequent zipping of homodimers is facilitated by electrostatic interactions, in particular by polar solvation energy and salt bridges that stabilize the final compact structure, which extends beyond the kinase interacting subdomain. Our study provides evidence that interdimer interactions within the chemoreceptor signaling domain are more complex than previously thought

    Predicting Bound Ions on the Protein Surface

    No full text

    Chronic Beryllium Disease: Revealing the role of beryllium ion and small peptides binding to HLA-DP2

    No full text
    <p>Modeled strucutures:</p> <p>1. peptides sequence alignment</p> <p>2. 3D strucutures of namural, strong, weak and DR peptides</p> <p>3. strucutres of [peptide+Be]-->protein</p> <p>4. strucutres of peptide-->[Be+protein]</p

    Continuous development of schemes for parallel computing of the electrostatics in biological systems: Implementation in DelPhi

    Get PDF
    Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (J Comput Chem. 2012 Sep 15; 33(24):1960–6.) to include parallelization of the molecular surface and energy calculations components of the algorithm. The parallelization scheme utilizes different approaches such as space domain parallelization, algorithmic parallelization, multi-threading, and task scheduling, depending on the quantity being calculated. This allows for efficient use of the computing resources of the corresponding computer cluster. The parallelization scheme is implemented in the popular software DelPhi and results in speedup of several folds. As a demonstration of the efficiency and capability of this methodology, the electrostatic potential and electric field distributions are calculated for the bovine mitochondrial supercomplex illustrating their complex topology which cannot be obtained by modeling the supercomplex components alone

    Progress in Developing Poisson-Boltzmann Equation Solvers

    Get PDF
    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects

    The Role of Protonation States in Ligand-Receptor Recognition and Binding

    Get PDF
    In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa’s and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pHdependence of the binding. Indeed, experimental data strongly suggest that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound proteins and their complex; however, the modeling becomes much more complicated if the bound state has to be predicted in a docking protocol or if the structures of either bound or unbound receptor-ligand are not available. The major challenges that arise in these situations are the coupling between binding and protonation states, and the conformational changes induced by the binding and ionization states of titratable groups. In addition, any assessment of the protonation state, either before or after binding, must refer to the pH of binding, which is frequently unknown. Thus, even if the pKa’s of ionizable groups can be correctly assigned for both unbound and bound state, without knowing the experimental pH one cannot assign the corresponding protonation states, and consequently one cannot calculate the resulting proton uptake/release. It is pointed out, that while experimental pH may not be the physiological pH and binding may involve proton uptake/release, there is a tendency that the native receptor-ligand complexes have evolved toward specific either subcellular or tissue characteristic pH at which the proton uptake/release is either minimal or absent. - See more at: http://www.eurekaselect.com/110454/article#sthash.pkwzcCNr.dpu

    SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations

    No full text
    Predicting the effect of amino acid substitutions on protein–protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/
    • …
    corecore